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We present a fast numerical method for solving the incompressible Euler’s equation in two 
dimensions for the special case when the flow field can be represented by patches of constant 
vorticity. The method is an adaptive vortex method in which cells (vortex blobs) of multiple 
scales are used to represent the patches so that the number of vortex blobs needed to 
approximate the patches is proportional to the length of the boundary curve of the patch and 
inversely proportional to the width of the smallest blob (cell) used. Points along the 
boundaries of the patches are advected according to the velocity obtained from the 
approximating vortices. 0 1990 Academic Press, Inc. 

INTRODUCTION 

Until the development of this method there have been two basic methods for 
evolving patches of constant vorticity in two dimensions. One method is contour 
dynamics [l-S]. In contour dynamics the velocity of any point in the fluid can be 
determined by integrating an appropriate kernel along the boundaries of the 
patches. In the numerical method one tracks points along the boundary of the 
patches and then advects these boundary points according to the velocity obtained 
by approximating the boundary integral by these same boundary points. Contour 
dynamics works extremely well if the contours are relatively simple; for smooth 
contours high order accuracy can be obtained [3-S]. However, even for smooth 
contours with a small maximum curvature there can be significant loss of accuracy 
in the evaluation of the boundary integral if the spacing of the points approxi- 
mating the curve is much greater than the distance between two closely spaced 
parts of a contour [S]. When the contours form regions of high curvature or 
singularities high order methods lose their high order accuracy unless one knows 
the location of the singularity a priori and it becomes more difficult to accurately 
evaluate the boundary integral necessary to obtain the velocity of a point along the 
boundary. 

The second method is vortex dynamics [9-143. This method is designed to 
calculate the dynamics of arbitrary configurations of vorticity in two or three 
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dimensions and thus much redundant work is done if the method is applied directly 
to the problem of patches of constant vorticity. In this method a uniform grid is 
drawn initially and each grid point inside of the patch is advected according to the 
velocity obtained by adding the contributions of each vortex element in the patch. 
The redundant work is the work done to advect the points which are interior to the 
contour. The high order accuracy of vortex dynamics cannot be obtained for the 
case of patches of constant vorticity since the vorticity distribution is not smooth. 
For the case of patches of constant vorticity the error in the vortex method is 
dominated by the error in approximating the initial vorticity distributions; this 
error occurs in approximating the vorticity near the boundary of the patches. Thus 
we can effectively increase the accuracy of the method by increasing the resolution 
of the method near the boundary of the patch. 

The method which we introduce here uses features of both methods in order to 
develop an efficient and robust algorithm for evolving patches in two dimensions. 
We advect the points on the boundary contours of the patches; however, we 
calculate the velocity at a given point by summing the contributions of the vortex 
elements inside of the patch. We use vortices of different sizes in order to 
approximate the vortex patches in an optimal way. When using general vortex 
methods the number of vortex elements required to approximate an area is propor- 
tional to 1/A12, where A( is the mesh spacing. In our adaptive method we are able 
to approximate a patch with the number of vortex elements required being propor- 
tional to l/At. This allows us to reduce the error by increasing the effective number 
of vortex elements approximating the patch. 

In the first section of the paper we will introduce the basic mathematics of the 
vortex method. This section includes the method of evaluating the velocity for a 
given vortex element. In the second section we describe the method used to 
approximate the area of the patch with the vortex elements; in the third section we 
present the numerical method; in the fourth section we discuss the error of the 
method; and in the fifth section we give an example which shows some of the 
complicated generic structures which appear in the patches. 

1. THE BASIC VORTEX METHOD 

Euler’s equation in two dimensions is [ 151 

$+(u.V)u= -v+, (1.1) 

where u(x, y, t) is the velocity of the fluid, t is time, P is pressure, and p is the 
density of the fluid. We consider the case of incompressible, (V . u = 0), and 
isentropic flow (VP/p = VW, for some w). We define the vorticity w as 

au, au, 
W-ax-z; 

(1.2) 
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and combine this definition with Eq. (1.1) to find 

a0.l 
~+(u.v)w=o. 

Equation (1.3) implies that the vorticity is advected with the fluid velocity u with 
the magnitude of the vorticity remaining constant as we follow a given fluid 
particle. 

We now derive an expression for the velocity u in terms of the vorticity. Consider 
a function 4(x, y), called the stream function, with continuous second derivatives; 
if we define the velocity u by 

where the subscripts on u indicate the Cartesian components of u, the incom- 
pressibility condition V . u = 0 is automatically satisfied by the equality of the mixed 
partials of 4(x, y). From the definition of vorticity equation (1.2) we immediately 
obtain 

Ap&!Y+!3!++w. au au 
ax ay ax2 ay2 (1.5) 

Thus by solving Poisson’s equation we can determine the velocity at any point in 
space if we know the vorticity. 

The general vortex method in two dimensions is based on the fact that one is 
able to write the fluid velocity in terms of the vorticity o and the fact that the 
vorticity is advected with the fluid velocity without a change in magnitude. In the 
general vortex method the vorticity is approximated by evaluating the initial 
vorticity at the points of a mesh of spacing A& For later times these vortex points 
are then advected according to a velocity obtained by finding an approximate 
solution of Eq. (1.5). The stream function 4 is approximated by @, where 

@(r, t) E (A5/6J2 i ui46(r-ri(t)); (1.6) 
r=l 

oi is the initial vorticity evaluated at the ith mesh point, N is the number of points 
approximating the vorticity, r = (x, y), and ri is the position of the ith mesh point 
at time t. bb(r) is defined by the equation 

Ad6 = f(r/@, (1.7) 

where f(r) is a smooth function satisfying j f dx dy = 1 and j x’y’jdx dy = 0 for all 
positive integers i and j such that 1 < i + j 6 p - 1 for some integer p. The general 
vortex method has been shown to converge to the exact answer for smooth vorticity 
distributions with an error proportional to (Ai;)” for arbitrary p provided that 
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6 = (A[)’ for cc < 1 [ 10-121. This high order accuracy cannot be exploited for 
patches of constant vorticity since the error is dominated by the fact that the 
discontinuous vorticity distribution is not approximated accurately initially. 

The method we design differs from the general vortex method because we are 
considering vorticity distributions which are constant inside of a region 0, initially 
and therefore discontinuous. From Eq. (1.3) we see that the magnitude of the 
vorticity is unchanged as the region 52, evolves into some other region Q(t) at 
time t. Since the vorticity is constant we know the vorticity at evey point in the 
interior of Q(t). Thus if we advect only points on the boundary of the region Q(t) 
we will have fewer points to advect than if we were to advect every point in a grid 
in the interior of Q, and we will have no loss of information, since we know that 
the vorticity inside of the region is constant. 

From Eq. (1.6) and (1.7) we note that the approximate stream function Q, 
is the exact stream function for the vorticity distribution given by o(r) = 
(d</6)2 EYE 1 w,f((r - r,)/6). Thus if we pick d< = 6 and f(r) =&(r) such that 

fok Y) = 
1 if 1x1 6 l/2 and ]y] d l/2 
0 if [xl 3 l/2 or I yJ 2 l/2 (1.8) 

the only error in the calculated velocity field will come from grid points which lie 
along the boundary of Q(t). If we were to advect the grid points as in the general 
vortex method at later times the grid points would no longer form a rectangular 
grid and our approximation to the true vorticity distribution would no longer 
represent the constant distribution. Thus at each time rather than advect all of the 
grid points independently we simply advect the boundary curve and at each time 
we determine the grid points which are inside of the boundary of Q(t). We then use 
these grid points along with thefgiven in Eq. (1.8) to calculate @ at the given time. 
We will discuss the method of choosing the grid points in more detail in the next 
section. 

We now proceed to find an explicit formula for c$~ as defined in Eq. (1.7) with 
f =f, as given in Eq. (1.8). We find tis for the case 6 = 2; the general case can then 
be found by scaling: #Jr) = (6/2)2d2(2r/6). We note that for the constant vorticity 
case under consideration a closed formula in terms of elementary functions may be 
obtained by explicitly integrating the logarithmic kernel over the square [ 11. We 
are interested in eventually generalizing this technique so that it is applicable to 
more general flows in which the vorticity is not constant and so we give a method 
of evaluating the stream function which may be more easily generalized. 

The Green function G(z, z’) for the Laplacian in two dimensions is G(z, z’) = 
(1/2?r) loglz- z’l, where z = x + iy. For lz’l < IzI we can expand G(z, z’) in a 
Laurent series. We find that 

(1.9) 
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When using Eq. (1.9) we must remember to take the real part of the right-hand side 
of the expression. Since &(r) = j G(z, z’)f,(r’/2) dx’ dy’ and since 

1 1 

s s 
z” dx dy = 

-I -1 I 
8( -4)” 

(n + l)(n + 2) 
if n=4m 

(1.10) 
0 if n#4m, 

we have for Izj > r. = $ that 

(1.11) 

where we mean to take the real part of the right-hand side of Eq. (1.11). 
In order to find &(r) for r < fi (r = Irl = Izl) we break c$* into two parts such 

that & = 4” + dh, where 4” is a particular solution of Eq. (1.7) and dh is a harmonic 
function which is determined by the boundary condition that &(r) be continuous 
at r = & We choose dp(r) = r*/4 in the region R. defined as R. = ((x, y): 1x1 < 1 
and I yl < 1). Define the regions RI, R,,, RI,,, and R,, as RI = ((x, y) : x > 1 and 
r<fi); R,,=((x, y): y>l andr<fi); R,,,=((x, y):x< -1 and r<$);and 
RI, = ((x, y): y< -1 and r <fi). We find 4” in the regions R,, RrI, R,,,, and 
R,, by requiring that 4” have continuous first derivatives that 4” be harmonic 
everywhere except in Ro. We find that 

dp(r)=c for (x, Y)ER~, 

for (x, Y) E 4, 

for (x, Y) E RI,, 

for (x, Y) E R,,,, 

for (x, Y) E RI,, 

(1.12) 

where once again we must remember to take the real parts of the right-hand side 
in Gq. (1.12). 

We now find I$~. Since q5” is harmonic we write 4h = C,“=, a,z”, where a, is 
complex and we mean to take only the real part of the sum. We find the a, by 
making q&(r) continuous at r = A. We expand q5p(r) on the circle r = r. = & in 
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a harmonic series ; 4” = C,“= ,, b, eino. Only the positive modes are considered since 
we are concerned with only the real part of the series. We find that b, = 0 unless 
n = 4m and that 

- 8r,( - 1)” sin(rc/4) + 4rt( - 1)” 
for m>O 

b4m = I rc(16mZ- 1) x(16m2-4) 

-1 4v,sin(rr/4) 
2+ 

ri 
for m=O. 

71 27l 

Substituting r. = ,/? and simplifying the expression for b4,,,, we obtain 

b4m = 

: --- n 3 2 1 24( - 1)” 
n(16m2- 1)(16m*-4) 

for m>O 

for m=O. 

From Eq. (1.11) we obtain o2 = C,“=, c4me-i4mB at r = ro, where 

I 
(-l),,’ 

7cm(4m + 1)(4m + 2) 
for m>O 

C 4m = 

a h(ro) for m=O. 

(1.13) 

(1.14) 

We require that 4” + 4” = #2 at r = r. and obtain that a4,,, = (c4,,, - b4,,,)/r~“‘, where 
in obtaining the expression for a4,,, we have equated only the real parts of the 
complex series. Thus we find that 

4h(r) = f (c4m -b4m) $9 
m=O 

(1.15) 

where b,, and c4,,, are defined in Eq. (1.13) and Eq. (1.14) and ro=&. 
Since we are interested in the velocity field which is given in terms of the 

derivatives of da(r), we write down the explicit formulae for the derivatives of 4*(r). 
It is convenient to define a complex function Ic/d as $(r) = 4, - i$Y. We see then that 
in terms of $ the velocity u is given by U, = Im(l(/) and uY = Re($), where Re and 
Im denote that the real and imaginary parts of the expression are to be taken. If 
we recall the Cauchy-Riemann equations which relate the real and imaginary parts 
of the derivative of a complex function, we see that 11/2 may be obtained in the 
regions, where & is harmonic by formally differentiating the expressions for d2 with 
respect to z. Thus we find that 
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*f(l)=; for (4 y) E &, 

+g+1-; for (x, y) 6 &, 

l+b$yr)= -i+; for (x, Y) E RI,, 

q;(r)= -1-i for (x, Y) E RIII, (1.16) 

$$, = f 4m(ccl, - bh) 5 for rdr,, 
??I=1 

IcIAr) = II/f(r) + IC/!i(r) for r<r,, 

and 

*drJ=i- jJ 4mh,&. for r>r,, 
m=l 

- 
where z* is the complex conjugate of z, r,, = 42, and b,, and cd,,, are defined in 
Eqs. (1.13) and (1.14). We note that 

4th) = (d/2) $2(W@. (1.17) 

We now discuss the efficient evaluation of the series in Eq. (1.16). The series in 
Eq. (1.16) define e2 for all values of r and the series converge absolutely for all 
allowed r. The number of terms N required to evaluate I/* to a given accuracy E 
depends on the ratio R - min(r/r,, r,/r); we find that Nz log(a(1 - R))/(4 log R). 
If we choose E= lo-i6, we find that for R= &, Nz 14; for R=0.9, Nz93; for 
R = 0.95, Nz 194; and for R = 0.99, Nz 1031. Thus we see that as R + 1 a large 
number of terms are required to evaluate $2. For R = 1, lo8 terms are required to 
evaluate ti2 to an accuracy of E = lo- 16. 

We can greatly reduce the number of terms required to evaluate $z for R -+ 1 if 
we note that by superposition i+Gzs can be written in terms of $6: 

(1.18) 

where r i,i=(l, l), r-i,,=(-1, l), r,,-,=(l, -l), and rr,,-i=(-1, -1). 
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As a simple example of the usefulness of Eq. (1.18), we use it to express $J 1, 1) 
in terms of values of tjz which are easy to evaluate. From Eq. ( 1.18) we have 

h(l, 1) = +,(1/2, 112) + +r(3/2, f/2) + +r(1/2,3/2) + 11/,(3/2, 312). 

We then use Eq. (1.17) to rewrite It/r in terms of 1c/* and simplify the resultant 
expression to obtain 

$*(A 1)=$2(3, l)+IcIz(l, 3)+$*(3,3). (1.19) 

Similar expressions can be obtained for e2(1, -l), IcIz( - 1, l), and @J-l, -1). If 
we were to calculate tiz( 1, 1) to an accuracy of lo- l6 directly using Eq. (1.16) lo* 
terms would be required; whereas using Eq. (1.19) only 33 terms are required for 
the same accuracy. 

A similar procedure can be used for evaluating tiz near the corner points 
(f 1, 5 1). Consider the evaluation of $2(r) with R corresponding to r as defined 
earlier. We pick an R. close to 1 such that if R d R. we evaluate $z by Eq. (1.16) 
and if R> R, we use Eqs. (1.18) and (1.17) to rewrite &(r) in terms of $Jri). We 
calculate Ri corresponding to ri and for any i,, such that Rio> R. we rewrite $2(ri0) 
using Eqs. (1.18) and (1.17). We continue this process until we have a sum of the 
form 

lcIz@) = ff ujIc/z(rj) 
J=l 

(1.20) 

with the condition on Rj and ctj, that given E > 0, 

either R,j < R, or lcljl < E for all j, 

where, as before, Rj= min(r,/r,, r,,/rj). The process is illustrated in Fig. 1 for 
R, = 0.95. The process can be carried out for any Ro, but for small R, the process 
is more complicated than for the case when R. is close to 1. Furthermore, for small 
R,, there is no computational advantage for most of the points r. The algorithm we 
illustrate will work provided R, > 0.94884. . . . This minimum value of R. is 
determined by the condition that the shaded region in Fig. 1 must remain in the 
region ((x, y): x > i and y < - 1) so that the point at which we are evaluating $ 
will always be close to the same corner at each level of refinement. By picking 
R, > 0.95 we can guarantee that at each step in the process if we must rewrite one 
of the $JriO) it will only be the one corresponding to the box closest to the corner 
point (see Fig. 1). We write down the explicit formula corresponding to Eq. (1.20) 
for the case illustrated in Fig. 1, where r is assumed to be close to the corner point 
(1, -1). We have for x>O andy<O, where r=(x, y), that 

(1.21) 
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0.00 
X axis 

FIG. 1. The self-similar method of evaluating the function I)~. The points which lie in the annular 
regions shown in Fig. 1 correspond to points which have R20.95. The shaded region shows points 
which could not be evaluated after two levels of subdividing the basic solution. 

where ri=(l-(i)‘)(l, -l), ri=r&+($)‘~-‘(-l,O), r$=r’,+($)‘--I(-1, l), and 
r’; = ri + ($)j-‘(0, 1). Similar expressions can be written for r which lie in the other 
quadrants. 

The number of subdivisions M required in Eq. (1.21) is determined as follows. 
Define rk = 12k(r - rfj)l for k = 0, 1, 2, . . . . where rfj is defined in Eq. (1.21) and define 
Rk = min(r,/v,, rk/rO). M is chosen to be the smallest integer m such that R, 6 R, 
or such that (4)” < E. As can be seen in Fig. 1 for most points r this will occur for 
M < 2. The worst case (the case requiring the most computational work) will occur 
when Ir-(1, -1)1=&z 0. The number of terms N required to evaluate t,h2(r) for 
this case is N z - 33 log, E. (About 33 terms are required to evaluate the three 
values of lcIz at each level.) For E = lo-l6 we have -log, 6% 53 and thus the 
number of terms required to evaluate r in this case is 33 .53 = 1749; of course, for 
the corner point the exact value is given more ehiciently by Eq. (1.19). This method 
requires orders of magnitude fewer operations to evaluate Ic/* than if Eq. (1.16) were 
used directly. 

2. APPROXIMATION OF THE PATCHES 

We now describe the algorithm for determining the grid cells which should be 
chosen to approximate a given patch of constant vorticity. We consider the 
xy-plane to be covered by families of square cells of size (i)“, m = . . . -2, - 1, 
0, 1, 2, . . . . The xy-plane is covered by placing a cell with a corner coinciding with 
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level= 0 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 

v1 33 
level= 2 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 

2b 

level= 1 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 

3b 

level= 2 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 

FIGS. 24. Approximating a patch with cells of increasing size. The steps are shown which are 
required to approximate a patch with cells of increasing size. At each step the size of cell used to 
approximate the patch is increased by a factor of two. 

the origin and the sides of the cell chosen parallel to the x-axis and y-axis. Given 
a grid of size A( and a closed curve C we want to determine all of the grid cells 
which lie inside of the curve C. We consider a grid cell to lie inside of C if the center 
of the cell lies inside of C. The curve C is approximated by N points rj which are 
distributed along C. We use linear interpolation to approximate the curve between 
the given points rj. We assume the points are listed in order so that the curve is 
traversed in the right-hand sense as j goes from 1 to N. 



4b 

level= 3 

level= 4 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

level= 5 

El 
s -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 

level= 3 

I,,,,/,,,, ,,l,I,,,lll,yi,.,,,, ,,1 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 

5b 

level= 4 level= 4 

-1.5 -1.0 -0.5 0.0 0.5 1.0 

X axis 

6b 

1.5 

level= 5 

El 
.,,,,, ,A,, ,,,,,,,,,,, ,,,LLyy,,,,,,,,,,,,, 

-1.5 -1.0 -0.5 0.0 0.5 1.0 

X axis 
1.5 
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The origin of the coordinate system is chosen so that the curve C lies in the 
quadrant in which both x and y are positive. Once the origin is specified the cells 
can be labeled by integer coordinates. The box whose corner coincides with the 
origin is labeled (0,O) and the coordinates of the other cells are obtained by 
counting along the coordinate directions from the (0,O) box. This method of 
labeling the cells is chosen so that one can easily determine the coordinates of the 
cells of a larger size which cover a given cell. The coordinates of the larger cell are 
obtained by dividing the coordinates of the smaller cell by the ratio of the size of 
the larger cell to the size of the smaller cell. (The remainder is dropped when 
dividing.) For instance consider the cell (5,9) of size h; this cell is contained in the 
cell (5, 9)/2 = (2, 4) of size Q; and also contained in the cell (5, 9)/4 = (1, 2) of size a. 

The first step in the process of approximating the patch is to find the sequence 
of cells which approximates the closed curve but is just inside of it; see Fig. 2a. We 
pick a cell c0 which lies just inside of the curve as a starting cell; i.e., a ceil inside 
of the curve such that one of the cell’s nearest neighbors lies outside of the curve. 
In general we can determine if a cell is inside of the polygon by determining if the 
cell is to the left of the line segment joining the points rN and r, and to the left of 
the next line segment in the polygon, ri and r2. In order to find the next cell in the 
sequence c , , we look at the two nearest neighbors to cO, n, and nY, which point in 
the same general direction as the local directed segment of the curve t, = r, - rN. 
If R0 denotes the position of the cell c0 then the position of n, is given by 
R, + sign(t,)( 1,0) and the position of ny is given by C, + sign(t,)(O, 1 ), where 
sign( t,) is the sign of the x component of t, and sign(t,) is the sign the y 
component. We then choose for the next cell in the sequence the one of the two 
cells which is closer to t, and which is inside the curve. Eventually the cells will 
reach the end of a segment and at this point the next segment of the polygon is 
considered in determining whether a cell is inside of the polygon. We continue the 
process in this manner keeping a list of the cells by keeping a list of their integer 
coordinates. When we return to the starting cell c0 we have a sequence of cells 
which gives us what we call a discrete curve which approximates the closed 
curve C. 

Once we have this discrete approximation of the curve by cells of size A5 we find 
the cells of size 245 which lie along or inside of the discrete boundary of size A<. 
The process is shown in Figs. 2a and 2b. For each cell in the list of cells of size A< 
we consider the cells of size 2 A&j which covers the cells of size A<. (The integer 
coordinate of this larger cell is found by dividing the coordinate of the smaller cell 
by 2, as described earlier.) We must determine if this larger cell of size 2A( lies 
inside of the discrete curve of size A(. In order to do this at the beginning of each 
size doubling we determine the extreme values of the coordinates of the cells of size 
A< which make up the discrete curve. We store these extreme values in two arrays 
of numbers Z, and Zy. The ith entry of Z, contains the minimum and maximum y 
coordinates of all cells with their x ccordinate equal to i; and the ith entry of Z, 
contains the minimum and maximum x coordinates of all cells with their y 
coordinate equal to i. The arrays Z, and I,, are formed by going through the list of 
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cells once and placing the x and y coordinates of the cells in the appropriate places 
in the arrays. Once these arrays are formed one can check whether a given cell lies 
inside of the discrete curve by simply checking whether the coordinates of the cell 
lie within the ranges given by the arrays I, and Zy. 

If the larger cell lies inside of the discrete curve we place the coordinates of this 
cell in an array B; these cells eventually will make up a new discrete boundary of 
size 2 dt. If the larger cell does not lie inside of the curve, we place the coordinates 
of the smaller underlying cell in an array A. Once we have gone through the 
complete list of cells of size dl the array B will contain a discrete approximation 
of the curve C of size 2 d(. The array A contains cells which cannot be replaced by 
cells of a larger size. 

At this point we can iterate the process. We use the cells given in array B and 
determine which cells of size 445 fit inside of the discrete curve of size 2A(. We 
always append the small cells which cannot be replaced by the larger cells to the 
array A. The process stops when at some doubling level the array B contains no 
cells. The array A will then contain cells of all the different sizes which will 
approximate the area enclosed by the polygon exactly the same as if cells of the 
smallest size were used throughout the area. Some cells may be repeated, however, 
and to prevent the possibility of double-counting some cells, we linearly sort all of 
the cells in A according to coordinate and size, and delete all cells which are listed 
more than once. 

In Fig. 2a we show a circle with radius equal to one as it is represented by cells 
of size A. In Fig. 2b we show the resultant configuration of cells of size & and & 
after we have replaced all smaller cells with larger ones where it is possible. 
In Figs. 3 through 6 we show the process of doubling the cell size around the 

In 4 
level= 5 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X axis 
FIG. 7. Cells approximating a circular patch. The configuration of cells approximating a circular 

patch is shown. The size of the smallest cells is &. 
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boundary of the patch. The process stops in Fig. 6 when no cells of size 1 fit inside 
of the patch. 

Figure 7 shows the final configuration of cells which approximate the circle. 
There are 237 cells in Fig. 7 ranging in size from & to 3. We emphasize that the 
area inside of the circle is approximated exactly the same as if we had used a 
uniform cell size of A; were we to use a uniform cell size, however, 3228 cells would 
be required to approximate the same area. 

In Table I we list the number of cells required to approximate a circle as we vary 
the minimum cell size d&j. We also list the number of cells which would be required 
if we were to use a uniform cell size to give the same approximation: this number 
is the number of vortex blobs which would be required in the standard vortex 
method. One should note that the actual number of cells is proportional to l/A& 
whereas the number of cells required to approximate the area when using a single 
sized cell is proportional to l/A<‘. When looking at the values of the total area of 
the cells in Table I it should be noted that the values do not converge to rr because 
the circle is being approximated by an 80-sided polygon. The exact area of the 
polygon is 3.1383638...: it can be seen that the approximating areas do converge 
to this value. 

In Fig. 8 we show the procedure of approximating a patch which is more com- 
plicated than a circle. The figure shows the sequence in which the cells are chosen; 
starting at the smallest scale and increasing the cell size by a factor of two until we 
reach the largest cell size, after five levels of refinement, in Fig. 8i. We see that in 
general several disconnected regions may develop as in Figs. 8g and h. 

The algorithm works as described above for the curves shown in Figs 2 and 8 ; 
however, if the curves are spiraled too much, the algorithm for determining whether 
a cell is inside of the discrete curve may fail. There are several ways to prevent this 

TABLE I 

Number of Cells Required to Approximate a Polygon 
Exact Area of the 80-gon Is 3.13836382 ... 

Size of cells Actual number Number of cells if Total area 

A5 of cells uniform of size dl of cells 

l/8 49 208 3.25000000 
l/16 122 812 3.17187500 
l/32 237 3228 3.15234375 
l/64 545 12884 3.14550781 
l/128 1034 51428 3.13891602 
l/256 2097 205668 3.13824463 
l/512 4097 822728 3.13845825 
l/1024 8092 3290776 3.13832855 
l/2048 16629 13163256 3.13836479 
l/4096 32762 52653032 3.13836527 
l/8192 65697 210612060 3.13836426 
l/16384 131489 842448 140 3.13836388 
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from happening. One way is to keep track of several extrema in the arrays I, and 
1,. The way we chose to prevent this is to break up a large spiraled region into 
several smaller regions so that the algorithm as described works on the smaller 
regions. We break up the regions, as can be seen in Figs. lOe-h, by considering the 
polygons obtained by drawing lines between two boundary points which are on 
opposite sides of the boundary curve. Breaking up the patches in this way 
introduces no additional boundary error in the method because the artificial 
boundary introduced by breaking the patch into several pieces is tilled exactly. 
There is only a slight additional computational effort due to the fact that cells of 
a smaller size have to be used at these cut regions and therefore there are more cells 
present than had the cuts not been present. 

3. THE NUMERICAL METHOD 

We can now describe the numerical method in detail. We will describe the 
method for a single patch of constant vorticity; the generalization to any number 
of patches follows immediately. 

Assume initially that we are given a region 52,. The vorticity is constant inside 
of the region and zero outside of the region. We wish to determine the shape of the 
region for later times as it evolves according to Euler’s equation. Denote the region 
at time t by Q(t) and denote the boundary curve of this region by C(s, t), where 
s is a lagrangian parameter; we usually take s to be the arclength at t = 0. Let r; 
be an approximation to C(jds, n dt), where A? is the time step, As is the spatial 
step and j = 1, 2, . . . . N. 

Given a polygon described by the N vertices r; we define a velocity at the point 
x which we denote by u(x, r,“, A(). The first step in defining u is to find an 
approximation of the N sided polygon r; by cells of size A< and larger as described 
in Section 2. We denote the positions of the centers of the M approximating cells 
by tk and we denote the size of the kth cell by 6,. We then define the complex 
function Y(x) by 

y(x)=% : $bi(X-5kL (3.1) 
k=l 

where o,, is the vorticity of the patch and $6 is defined in Eqs. (1.16) and (1.17). 
We define the Cartesian components u.,, U, of u in terms of Y as 

and 

4(x, rl, AtI) = WY(x)) 

u&x, r:, At) = WY(x)), 

(3.2) 

where Im and Re denote the real and imaginary parts of Y. As the final step in the 
method we integrate in time using fourth-order Runge-Kutta [16]. We define r;+’ 
as follows : 
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to determine the cells which approximate a given patch. The size A( of the smallest cells used is At = A. 
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FIG. 8-Continued 

dry = At u(r:, r;, At) 

r! = rl+ $Ary 

Arf = At u(rf, r,!, At) 

rf = r’ + +Ari 

Arf = At u(rf, ry, At) 

r? = r: + Arf 

Arj = At u(r;, r/‘, At) 

‘i n+l = t-7 + k(Arp + 2 Arl + 2 Arf + Arj). 

2.0 

(3.3) 
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We pick the points r,” evenly spaced along the curve C initially. As the curve 
C(s, t) evolves there is a tendency for the curve to stretch and the distance between 
the approximating points r,” will change. In order to maintain a given resolution 
throughout the calculation it is necessary to add and delete points. When two 
adjacent points become separated by a distance of more than 2d.r; where As is the 
initial separation of the points, we introduce another point between the two points 
by linearly interpolating between the two points. At certain points of C(s, t) the 
points r; can become very closely spaced. In order to keep the number of points 
approximating the curve C small when two points are closer together than some 
minimum distance dmin, we simply remove one of the points. We usually take 
d,i, = A</4 in the test problems considered. This value was small enough so that 
points were very seldom eliminated. We intentionally picked such a small value 
since we were interested in investigating the formation of singularities. If one were 
not interested in such line structures much computational effort could be saved by 
picking d,,, much larger. 

There are many higher order interpolation methods which could be used to 
redistribute the points; however, we did not want to introduce any smoothing into 
the method and so we chose a second-order method. For instance, Shelley and 
Baker [S] use spline techniques to redistribute the points in order to maintain a 
smooth parametrization of the mesh r,“. Such techniques are more expensive than 
the one we employ and the accuracy of our method does not depend on main- 
taining a smooth parameterization of the curve as is required in [S]. We wish to 
emphasize that because of the robustness of the algorithm any kind of mesh reline- 
ment can be used along the boundary without affecting the method as long as the 
usual precautions are taken to maintain the accuracy of the mesh refinement. 

The final part of the numerical method is the evaluation of the sum in Eq. (3.1). 
Since each of the functions tia, is defined in terms of a multipole expansion it is 
natural to use a technique similar to that introduced by Greengard and 
Rokhlin [ 171 to efficiently evaluate the sum in Eq. (3.1). If the full scheme as 
presented in [17] is used the computational cost of our method is O(N), where N 
is the number of points approximating the boundary of the patch. This is in 
contrast to contour dynamics which have a computational cost which scales as 
O(N2). In our implementation of the adaptive vortex method we use a slightly 
modified version of [ 171 in which we make a multipole expansion at only one scale 
rather than a number of scales. We pick a box size intermediate between the largest 
and smallest blob sizes and form the multipole expansion for all boxes of this one 
size which contain smaller blobs by summing the contributions from all of the blobs 
contained in the expansion box. When we evaluate the velocity at points outside the 
radius of convergence of the multipole expansion we can evaluate the contribution 
from all of the smaller blobs by evaluating the one multipole expansion. This 
modification simplifies the general method of Greengard and Rokhlin, but the 
method is no longer O(N), but scales roughly as O(N312). There is still a great 
savings in computational cost over that represented by the direct evaluation of the 
sum in Eq. (3.1). 
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We wish to emphasize that the speed of our method is not dependent on the 
multipole summation technique; this only improves the performance of the method. 
The fact that we approximate our flow initially with vortex blobs of different scales 
whose multipole expansions are already known is the reason that the method is 
successful. We do not have to build the multipole expansions for large blobs of the 
smallest size. 

4. ERROR ANALYSIS 

In this section we discuss the numerical errors of the method. There are three 
sources of error in the method: the error associated with the time integration, the 
error associated with the discrete approximation of the boundary of the patch, and 
the error associated with the approximation of the area inside of the polygonal 
region defined by the discrete approximation of the patch. We discuss briefly why 
the error E should be of the form 

Ez C, At + C,(As)‘+ C,(At)4 (4.1) 

The error due to the RungeeKutta time integration should be fourth-order and we 
will not discuss this source of error in any detail. We will discuss the other two 
sources of error in more detail and we will verify the form of the error given in 
Eq. (4.1) for some specific examples. 

The spatial error in the numerical method arises solely from the fact that we are 
not representing the area of the patch exactly. We calculate the exact velocity 
produced by the approximate vortex distribution given by the cells which 
approximate a given vortex patch. Since the velocity is given as a solution of 
Poisson’s equation with the vorticity as the source term, we can bound the error in 
the velocity at any given time by a constant times the difference in area between the 
approximate vortex patch and the exact vortex patch. Thus we expect that the error 
in the method should be solely due to the error in approximating the area of the 
exact vortex patch by the vortex cells. This error can be broken into two parts. 

The first part of the error is that due to the fact that we are approximating a 
continuous curve by a polygon. We expect this part of the error to contribute a 
term proportional to (As)~, where As is the maximum distance between adjacent 
points of the polygon. x t ds, 

where t = dr/ds is the tangent to the curve. The formula for the area 
is invariant under translations and thus we are free to pick r(0) as the origin of the 
coordinate system. With this choice of the origin the contribution to the integral 
due to the straight segment vanishes and we have 

Area=il 
A., 

r x t ds. 
0 

581/89/l-13 
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We expand the integrand in a Taylor series about the point s = 0 and obtain 

r x t = f t, x t; + ; (2tb x to” + 3t, x t6’) + . . , 

where ’ denotes a derivative with respect to arclength and the subscript denotes 
evaluation at s = 0. If we integrate this expression we find that 

Area=%t,xn,+ ..., 

where JC is the curvature and n is the unit normal vector defined by xn= t’. 
Equation (4.2) gives us the error due to one segment of the polygon; we sum this 
error over the N segments of the polygon and find 

Area < ufw~)21mx \ 
12 ’ (4.3) 

where [K ds2] max denotes the maximum over the N points of the polygon and L is 
the perimeter of the curve. Equation (4.3) gives us the desired form of the error. The 
error can be kept small by reducing the size of As in regions of the curve where the 
curvature is large. 

The last part of the error to consider is the error due to the fact that we are 
approximating the area inside of an arbitrary polygon by squares of a finite size A<. 
The error in the area is solely due to the cells which are intersected by a sement of 
the polygon. If we consider a segment of length 1, then the most cells of size At that 
this segment can intersect is 1,/A<. Thus the total error introduced in the area inside 
of the polygon is 

Area< f l,A(=LA<, 
j=l 

(4.4) 

where L is the perimeter of the polygon. Equation (4.4) gives us the desired form 
of the error. 

We now demonstrate the validity of Eq. (4.1) numerically. We compare the exact 
solutions for elliptical patches given by Lamb [18] to the approximate solutions 
obtained by our numerical method. The position (x, y) of a fluid particle inside the 
elliptic patch of constant vorticity o at time t is given by 

x = $t(a + b) cos(Qt + E) + $(a - b) COS(E) (4.5) 

FIG. 9. The error in the numerical method as a function of time, Ar, As, and A<. The 15, error 
between the calculated and exact solutions is shown for an ellipse with semi-major and semi-minor axis 
equal to 2.0 and 1.0, respectively. The error is plotted as a function of one of the parameters: time, As, 
At, or At for specific values of the other parameters shown in the figure. 
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and 

y = &k(a + 6) sin(Qt + E) - +k(a - b) sin(e), 

where a and b are the lengths of the semi-major and semi-minor axes of the ellipse; 
k and a, 0 6 k < 1, 0 < E < 271 are two parameters which label the different fluid 
particles inside of the ellipse; and 52 = 2ab/(a + b)’ is the rotational frequency of a 
fluid particle. The boundary of the patch is given by the curve obtained by setting 
k = 1. We have compared the exact and approximate solutions for several values of 
a and b and we find that the L, error E,, of the positions of particles along the 
boundary of the patch satisfies Eq. (4.1). The L, error is defined as 

E;,=As; Ir;-r(jA~,nAt)(‘, 
j= 1 

where r(s, t) = (x, y) is the solution given by Eq. (4.5) for k = 1. 
We now discuss the case a = 1 and b = 2 in detail; we pick o = 1 since the time 

can be scaled by the magnitude of the vorticity. For this case we pick the points 
along the ellipse so that they are uniformly spaced in E and thus AE = 27r/N and we 
choose As = AE. We calculate the L2 error for At = 0.4, 0.8, 1.6; As = 27c/N where 
N = 20, 40, 80, 160; and A{ = l/2”, where m = 3, 4, . . . . 8, 9; we calculate the error 
at each time step up to a time t = 8.0. As can be seen in Fig. 9a over the range of 
times considered the error is roughly linear as a function of time. In addition to the 
dependence of the error as given in Eq. (4.1) we assumed a linear dependence of the 
error on time and thus we assume the error has the form 

E,, = T(C, 44 + CJAS)~ + C,(At)4), (4.6) 

where T is the time. We obtained the error at 810 points and lit the data to the 
functional form given by Eq. (4.6) with a least squares fit. For the ellipse considered 
we obtain 

C, = 0.126, c2 = 0.0735, C3 = 0.000266. (4.7) 

In Fig. 9 we show the error for some specific values of the parameters T, A<, As, 
and At. In Fig. 9 the solid curve is that given by Eqs. (4.6) and Eq. (4.7); the solid 
points are the actual error. In Fig. 9b we show the error as a function of At; in 
Figs. 9c-d we show the error as a function of As; and in Fig. 9e we show the error 
as a function of At. We see that in all cases the error follows the dependencies given 
by Eq. (4.6). 

We note that for a more generic example the time dependence may be more 
complicated, but the error will have the same form for a given fixed time. From 
Eqs. (4.3) and (4.4) we see that the coefficients of the error grow linearly with the 
length and in generic examples the length increases as a function of time. 
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5. NUMERICAL RESULTS 

In this section we will show the results of a calculation which was done using the 
method described in the first part of this paper. We pick the example because it 
shows the generic structures which evolve in patches of constant vorticity. The 
strengths of the adaptive vortex method presented here are immediately apparent 
in the way in which the method automatically adapts to resolve these long and thin 
features without loss of accuracy and without the introduction of any instabilities 
in the arm. 

The example shows the versatility and robustness of the method. Figure 10 shows 
the evolution of two patches which are circular initially. We show the conligura- 
tions of the cells which are used to approximate the area contained inside of the 
contours. Initially the patches are circles of radius 1.0 and are separated by a 
distance of 0.1. The top patch has vorticity equal to 2.0 and the bottom patch has 
vorticity equal to 1.0. The calculation was done with 44 = l/128, As = 2rc/160, and 
At = 0.2 and represents the converged result to an accuracy equal to the resolution 
of the plot. The calculation took 12 h on a Ridge 3200 computer; the current code 
runs 3 times faster on the Personal Iris 4D/20 than on the Ridge 3200. At t=O 
there are 320 points approximating the boundary curves and it takes approximately 
2000 cells to approximate the area which is equivalent to 103,000 cells of a uniform 
cell size. At t = 6.0 there are 489 points approximating the boundaries; and it takes 
3700 points to approximate the area equivalent to 103,000 cells of uniform size. The 
calculation from t = 0 to t = 6 takes 3 h of computer time. At t = 13.0 there are 1059 
points approximating the boundaries; and it takes 7200 points to approximate the 
area equivalent to 103,000 cells of uniform size ; the perimeter has increased from 
12.57 at t = 0 to 50.06 at t = 13.0. 

This example shows the extreme range of scales which appear in short times in 
the evolution of patches of constant vorticity. The long narrow structures which 
appear in Fig. 10h are typical of the structures which appear in vortex patch 
calculations. In the method presented here no restriction need be imposed on the 
spacing of the contours relative to the point spacing approximating the contours. 
We see in Fig. 10 that the long narrow tail contains a relatively small fraction of 
the total area of the patch, whereas it contains a large fraction of the perimeter of 
the curve. 

6. CONCLUSION 

We have presented a numerical method for evolving patches of constant vorticity. 
The method is a mixture of contour dynamics and vortex methods. This method is 
the first fully adaptive vortex method. We emphasize that because of the adaptivity 
of the method we are able to calculate numerical solutions of vortex patches of 
constant vorticity to a much higher resolution than was possible with vortex 
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FIG. 10. The evolution of two circular patches of constant vorticity. The patches have radius I = 1.0 
and are separated by a distance d=O.l initially. The top patch has vorticity w =2.0 and the bottom 
patch has o = 1.0. We show the adaptive approximation of the two patches of constant vorticity as they 
evolve. 

methods before the development of this method. We are able to do calculations 
which would require millions of vortex elements to obtain a similar resolution [ 193. 

Our method compares favorably with standard contour dynamics methods. In 
our method there is no evidence of instabilities and no restrictions need be placed 
on the spacing of the points approximating the contour relative to the separation 
of the contours. The accuracy of our method is not sensitive to the formation of 
singularities in the boundary curve and also the accuracy does not degrade as long 
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FIG. IO-Continued 

thin finger structures form or as contours approach each other. These are extremely 
important features of our method since these structures are generic in vortex patch 
calculations and must be handled routinely. 
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